본문 바로가기 대메뉴 바로가기

보도자료

16.4배 빠르게 반응하고 2배 이상 더 효율적인수소 저장·운송 기술 개발

작성자대외협력실(김도균)  조회수6,856 등록일2024-11-27
[사진1] 16.4배 빠르게 반응하고 2배 이상 더 효율적인 수소 저장·운송 기술을 개발한 한국화학연구원 김상준 박사 연구팀(오른쪽부터 김상준 선임연구원, 강동권 학생연구원).JPG [943.4 KB]
(업로드) 16.4배 빠르게 반응하고 2배 이상 더 효율적인 수소 저장·운송 기술 개발_241127.hwpx [3,053.7 KB] 미리보기
[사진1] 16.4배 빠르게 반응하고 2배 이상 더 효율적인 수소 저장·운송 기술을 개발한 한국화학연구원 김상준 박사 연구팀(오른쪽부터 김상준 선임연구원, 강동권 학생연구원)

- 전기화 기술로 촉매 반응 속도와 수소 추출 효율을 극대화한 수소 경제 핵심기술 개발
- 신속하고 안정적인 수소 공급이 가능하여, 온보드 수소 모빌리티에 직접 적용할 것으로 기대


□ 국내 연구진이 전기화를 통해 우수한 수소 추출 효율 및 반응 속도까지 확보한 수소 경제 핵심기술을 개발하였다.

   ○ 한국화학연구원 김상준·박지훈 박사, 서울대학교 한정우 교수 공동연구팀은 화석연료 대신 전기로 촉매를 직접 가열하는

       ‘전자기 유도 촉매 가열 시스템(ECIHS)*’을 도입했다. 이를 통해 촉매 반응 속도와 수소 추출 효율을 대폭 향상시키는

       수소 저장·운송 기술을 개발했다.* ECIHS: Electrified Catalytic Inductive Heating System

□ 글로벌 탄소중립 기조에 따라 친환경 에너지 사용 기술 개발이 시급한 가운데, 수소 에너지는 청정한 에너지원으로

    주목받고 있다. 특히 정부가 발표한 '12대 국가전략기술' 중 하나로 포함되며, 그 중요성이 더욱 부각되고 있다.

   ○ 하지만 수소는 부피가 크고 폭발 위험이 높아 안전하고 효율적인 저장·운반 기술이 반드시 필요하다. 이를 해결하는

       ‘액상 유기물 수소 운반체*(LOHC)’ 기술은 수소를 액체 상태로 상온·상압에서 안전하게 저장 및 운반할 수 있다.

       또한, 기존 유조차를 활용해 운송 가능하여 추가 인프라 비용을 절감할 수 있는 큰 장점이 있다.

       * LOHC: Liquid Organic Hydrogen Carrier

   ○ 그러나 기존 LOHC 수소 추출 방식은 외부에서 반응기를 가열하는 방식을 주로 사용해, 에너지 소모가 크고 반응 속도가

       느리며 부수 반응이 발생하는 등의 문제를 해결하여 수소 추출 효율을 더욱 향상시키는 연구가 필요하다.

   ○ 특히 기존의 LOHC 수소 추출 방식이 액체 상태인 반응물(LOHC)과 고체 상태의 촉매, 그리고 기체 상태의 생성물인 수소가

       섞이는 복잡한 환경에서, 불가피하게 외부에서 촉매를 직접 가열할 수밖에 없었다. 

□ 이를 개선하기 위해 연구팀은 ‘전자기 유도 촉매 가열 시스템’ 방식을 도입했다. 전기로 촉매를 직접 가열하여 기존 기술 대비

    월등히 빠른 반응 속도와 수소 추출 효율, 안정성 등을 확보하였다.

   ○ 전자기파를 이용해 촉매 자체에서 열을 발생시키는 이 방법은, 반응 용액 전체를 가열하지 않고 필요한 부분만 빠르게 가열하여

       에너지 손실을 줄이고 반응 속도를 향상시킬 수 있다.

   ○ 이를 위해 연구팀은 전자기파에 의해 효율적으로 발열되는 특수한 소재인 ‘티타늄 실리콘 카바이드*’를 벌집 모양의 촉매 지지체로

       활용하여 열 전달 효율을 높였다. 또한 촉매의 반응 성능을 높이기 위해 백금(Pt)에 황(S)을 첨가한 촉매를 사용하여,

       적은 발열 에너지로도 효율적인 수소 추출이 가능하도록 했다.

      * Titanium Silicon Carbide(Ti3SiC2) : 금속과 세라믹의 성질을 동시에 가진 독특한 소재로, 촉매 반응에서 열을 효과적으로 전달하는 특성을 가짐.

   ○ 그 결과, LOHC 물질에서 수소를 추출하는 과정에서 기존 외부가열 방식 대비 16.4배 빠른 반응 속도와 2배 이상의 높은 수소 추출 효율을

       달성하였다. 또한, 200시간 이상 안정적인 수소 생산을 통해 장기적인 안정성도 입증하였다.

   ○ 연구팀은 모형 수소차 실험을 통해 3초 내에 수소 발생, 11.34초 만에 수소차 운행이 가능함을 확인했다. 이를 통해 온보드(On-Board)

       수소 모빌리티로의 직접 적용 가능성을 입증했다.

□ 화학연 김상준 박사는 “이번 성과는 액상 촉매 반응의 비효율성을 극복하고 수소 경제 핵심 기술로 자리잡을 가능성을 보여준다”면서,

    "향후 지속적인 연구를 통해 수소 기술 상용화를 추진하겠다”고 밝혔다.

   ○ 이번 연구는 에너지 분야의 권위지인 '줄(Joule, IF: 38.6)' 8월 호에 게재되었으며, 한국화학연구원 자체사업인 K-solution R&D 사업의

       지원을 받아 수행되었다.